0.8 A - 600 V overvoltage protected AC switch (ACS)

TO-92

COM Common drive reference to connect
to the mains
OUT Output to connect to the load
G Gate input to connect to the controller through gate resistor

Product status link	
BT131	
Product summary	
$\mathbf{I}_{\mathbf{T}(\text { RMS })}$	0.8 A
$\mathbf{V}_{\text {DRM }}, \mathbf{V}_{\text {RRM }}$	600 V
$\mathbf{I}_{\mathbf{G T}}$	10 mA

Features

- Enables equipment to meet IEC 61000-4-5 surge with overvoltage crowbar technology
- High noise immunity against static $\mathrm{dV} / \mathrm{dt}$ and IEC 61000-4-4 burst
- Needs no external protection snubber or varistor
- Reduces component count by up to 80% and Interfaces directly with the microcontroller
- Common package tab connection supports connection of several alternating current switches on the same cooling pad
- $\quad \mathrm{V}_{\mathrm{CL}}$ gives headroom before clamping then crowbar action

Applications

- Alternating current on/off static switching in appliances and industrial control systems
- Driving low power high inductive or resistive loads like:
- relay, valve, solenoid, dispenser
- pump, fan, low power motor, door lock, air flow dumper
- lamp

Description

The BT131 belongs to the AC switch range. This high performance switch can control a load of up to 0.8 A .
This device switch includes an overvoltage crowbar structure to absorb the inductive turn-off energy, and a gate level shifter driver to separate the digital controller from the main switch. It is triggered with a negative gate current flowing out of the gate pin.

Table 1. Absolute maximum ratings ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter		Value	Unit
$\mathrm{I}_{\text {(RMS })}$	On-state rms current (full sine wave), $\mathrm{S}=5 \mathrm{~cm}^{2}$	$\mathrm{T}_{\text {amb }}=64^{\circ} \mathrm{C}$	0.45	A
		$\mathrm{T}_{\text {lead }}=76^{\circ} \mathrm{C}$	0.8	
${ }^{\text {ITSM }}$	Non repetitive surge peak on-state current T_{j} initial $=25^{\circ} \mathrm{C}$, (full cycle sine wave)	$\mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}$	13	A
		$\mathrm{t}_{\mathrm{p}}=16.7 \mathrm{~ms}$	13.7	
12 t	$1^{2} \mathrm{t}$ for fuse selection	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	1.1	$A^{2} \mathrm{~s}$
d//dt	Critical rate of rise on-state current $\mathrm{I}_{\mathrm{G}}=2 \times \mathrm{I}_{\mathrm{GT}}, \mathrm{tr} \leq 100 \mathrm{~ns}$	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	100	A/ $/ \mathrm{s}$
$\mathrm{VPP}^{(1)}$	Non repetitive line peak pulse voltage		2	kV
$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	Average gate power dissipation	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	0.1	w
$V_{G M}$	Peak positive gate voltage	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	10	v
$I_{\text {GM }}$	Peak gate current ($\mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}$)	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	1	A
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-40 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Operating junction temperature range		-30 to +125	${ }^{\circ} \mathrm{C}$

1. according to test described by standard IEC 61000-4-5, see Figure 15. Overvoltage ruggedness test circuit for resistive and inductive loads, $T_{\text {amb }}=25^{\circ} \mathrm{C}$ (conditions equivalent to IEC 61000-4-5 standard) for conditions

Table 2. Electrical characteristics $\left(\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Test conditions	Quadrant	Value		Unit
$\mathrm{I}_{\mathrm{GT}}{ }^{(1)}$			Max.	10	mA
V_{GT}			Max.	1.0	V
$V_{G D}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DRM }}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	II - III	Min.	0.15	V
I_{H}	IOUT $=100 \mathrm{~mA}$		Max.	10	mA
I_{L}	$\mathrm{I}_{\mathrm{G}}=1.2 \times \mathrm{I}_{\mathrm{GT}}$		Max.	25	mA
$\mathrm{dV} / \mathrm{dt}$	$\mathrm{V}_{\text {OUT }}=402 \mathrm{~V}$, gate open, $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		Min.	2000	$\mathrm{V} / \mu \mathrm{s}$
(dl/dt)c	Without snubber ($15 \mathrm{~V} / \mu \mathrm{s}$), $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$, turn-off time $\leq 20 \mathrm{~ms}$		Min.	2	A/ms
V_{CL}	$\mathrm{I}_{\mathrm{CL}}=0.1 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$		Min.	650	V

1. Minimum $I_{G T}$ is guaranteed at 10% of $I_{G T}$ max.

Table 3. Static electrical characteristics

Symbol	Test conditions			Value	Unit
$V_{\text {TM }}{ }^{(1)}$	$\mathrm{I}_{\text {TM }}=1.1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	Max.	1.3	V
$\mathrm{V}_{\text {T0 }}{ }^{(1)}$	Threshold voltage	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	Max.	0.85	V
$\mathrm{R}_{\mathrm{d}}{ }^{(1)}$	Dynamic resistance	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	Max.	300	$\mathrm{m} \Omega$
IDRM	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	Max.	2	$\mu \mathrm{A}$
IRRM		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		0.2	mA

$1.1 \quad$ Characteristics (curves)

Figure 1. Maximum power dissipation versus rms on-state current

Figure 2. On-state rms current versus ambient temperature

Figure 4. Relative variation of holding and latching current versus junction temperature

Figure 6. Surge peak on-state current versus number of cycles

2.1 TO-92 package information

- Lead free plating + halogen-free molding resin

Figure 7. TO-92 package outline

Table 4. TO-92 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		1.35			0.0531	
B			4.70			0.1850
C		2.54			0.1000	
D	4.40			0.1732		
E	12.70			0.5000		
F			3.70			0.1457
a			0.50			0.0197
b		1.27			0.500	
c			0.48			0.0189

1. Inches dimensions given for information

IMPORTANT NOTICE - PLEASE READ CAREFULLY
SZGKTMicroelectronics NV and its subsidiaries reserve the right to make changes, corrections, enhancements, modifications, and improvements toSZGKT.

